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Preface 

This report comprises the final report for a study entitled, 

"Fourier Transform Processing and Coding of Images 

the University of Southern California 

for the Jet Propulsion Laboratory under the project direction of 

Fred C. Billingsley and Thomas Rindfleisch of JPL. 

performed by 

Electronic Sciences Laboratory 



1 Introduction 

The classic problem in the design of image coding systems for 

digital communication links is the search for a cod ill 

minimize the number of code symbols required to describe an image. 

This coding method must not degrade the quality of the image beyond certain 

fidelity limits, and furthermore, the coding method must  not be overly 

sensitive to channel errors .  A great amount of investigation has been 

performed in the search for such image coding systems [ 1-31. 

tunately, most of the systems developed either do not exhibit satisfactory 

performance, or  are too difficult to implement. The transform image 

coding method discussed in this report is a new approach to the problem 

of image coding. This image coding system achieves a reasonably large 

bandwidth reduction and offers a certain immunity to channel e r ro r s  

without significant image degradation. Implementation is presently 

feasible for slow scan image systems. 

Unfor- 

1.1 Background 

The introduction of the fast  Fourier transform algorithm [ 4-81 

has led to the investigation of the Fourier transform image coding tech- 

nique whereby the two dimensional Fourier transform of an image is 

transmitted over a channel rather than the image itself 

investigation has itself led to the study of a related image coding technique 

in which an image is transformed by a Hadamard matrix operator [ 13-151. 

The Hada 

9-12]. This 



rows and columns are orthogonal to one another. A high speed Hadamard 

transform computational algorithm, similar to the fast  Fourier transform 

algorithm, has been developed [13 1. 

The Fourier and Hadamard transforms are but two of a large 

number of transforms that have potential applications for image coding. 

In this report the general properties of image transforms a r e  considered. 

Specific experimental examples of the performance of the Fourier and 

Hadamard image transforms a r e  given. 

1.2 Image Transform Coding 

Figure 1 - 1 illustrates the block diagram of a generalized transform 

image coding system. In this system a transform is performed on the 

intensity samples of the image. The image transform samples a r e  then 

quantized and coded for transmission over a digital link. 

the received data is decoded, and an inverse transform is performed to 

reconstruct the original image. 

implemented by optical, electrical, or digital techniques. The experi- 

At the receiver 

In principle the transforms could be 

mental results presented in this report have been obtained for a general 

purpose digital computer implementation of the image transforms. 

attempt has been made to determine the "best" means of transform 

No 

implementation, other than to present the most efficient computer 

algorithms. 

As a prelude to the subsequent sections Figures 1-2 to 1-7 contain 

examples of the two dimensional Fourier and Hadamard transforms of an 

image. The original images containing 256 by 256 elements and linearly 
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a) Original 

- 

1 

I 

h 

I 
b) Inverse Fourier Transform of 

Fourier Transform 

c) Magnitude of Fourier Transform d) Logarithm of Magnitude of 
Fourier Transform 

Figure 1-2. Fourier Transforms of SurPepor Spacecraft Footpad 

(4) 



a) Original b) Inverse Fourier Transform of 
Fourier Transform 

c) Magnitude of Fourier Transform d) Logarithm of Magnitude of 
Fourier Transform 

Figure 1-3. Fourier Transforms of Surveyor Spacecraft Experimental Box 

( 5 )  



a) Original b) Inverse Fourier Transform 
of Fourier Transform 

c) Magnitude of Fourier Transform d) Logarithm of Magnitude of 
Fourier Transform 

Figure 1-4. Fourier Transforms of Surveyor Spacecraft Boom 

(6 1 



a) Original b) Hadamard Transform of Hadamard 
Transform 

c) Magnitude of Hadamard Transform d) Logarithm of Magnitude of 
Hadamard Transform 

Figure 1-5. Hadamard Transforms of Surveyor Spacecraft Footpad 



a) Original b) Hadamard Transform of 
Hadamard Transform 

c) Magnitude of Hadamard 
Transform 

d) Logarithm of Magnitude 
of Hadamard Transform 

Figure 1-6. Hadamard Transforms of Surveyor Spacecraft Experimental Box 

(8 )  



a) Original b) Hadamard Transform of 
Hadamard Transform 

c) Magnitude of Hadamard 
Transform 

d) Logarithm of Magnitude of 
Hadamard Transform 

Figure 1-7. Hadamard Transforms of Surveyor Spacecraft Boom 



quantized to 64 grey levels have been transformed on a general purpose 

computer of the experimental image processing equipment described in 

Appendix C .  Spatial and transform domains have been displayed on a 

cathode ray tube monitor for photographic recording. A l l  transforms 

contain 2 56 by 2 56 sample points. 

Figures 1-2 to 1-7 indicate that there is no apparent image degra- 

dation between the originals and the double transforms as a result of the 

image transform operations. 

originals has caused the energy in the transform domains to be squeezed 

toward the zero spatial frequencies. It is this characteristic of trans* 

formed images that is exploited to achieve a bandwidth reduction. The 

e r ro r  immunity property of transform coding results from the inherent 

averaging operation of the transform. 

structed image is a weighted function of all transform samples. Hence, 

the magnitude of a single channel e r ror  is distributed over all of the 

reconstructed elements. 

The inherent correlation of elements in the 

Each intensity sample of a recon- 



2. Image Transformation 

Consideration is given in this section to the mathematical formu- 

lation of image transforms, The characteristics and properties of the 

Fourier, Hadamard, and other transforms are then developed, and finally 

conditions a r e  given for the existence of fast  computational algorithms. 

2.1  Formulation 

An original image may be represented by an a r r ay  of intensity 

components or  samples over the image surface b y  two dimensional 

sampling. In the transform coding system, i t  is conceptually possible to 

process the entire image or subsections of the image. 

or subsection size is dependent upon the degree of spatial correlation 

The “best” image 

of the image and the amount of processing permitted. 

discussion an image a r r a y  wi l l  be considered to be a square a r r ay  of N 

For  the present 

2 

intensity samples described by the function f (x8 y), over the image 

coordinates (x,y). 

image ar ray ,  F(u,v), itself defined on a square a r r ay  of N points, may 

Then the two dimensional forward transform of the 

2 

be expressed as 

N-1 N-1 
F(’8v) = C C f(x,y) a(x,y,u,v)  

x=o y=o 

where a(x, y, u, v) is the forward transformation kernel. The kernel is 

said to be separable if  i t  can be written as 



A separable two dimensional transform can be computed in two steps. 

F i r s t ,  a one dimensional transform is taken along each row of the image, 

f (x, y) , yielding 

Next, a second one dimensional transform is taken along each column of 

F (u ,  y) giving 

The transformation kernel is called separable symmetric i f  

For  ease of implementation, the separable symmetric property is desir- 

able. Furthermore, since the statistical intensity variations of most 

images a r e  nearly the same in the vertical and horizontal directions only 

separable symmetric kernels usually need be considered. 

A reverse transform may be defined as 

where b(x, y, u, v) is the reverse transformation kernel. Fo r  f(x, y) and 

F(u, v) to be transform pairs the following conditions a r e  sufficient: 



It is often useful to express two dimensional transforms in matrix 

notation. Fo r  a transform kernel that is separable symmetric let: 

[ f l  = imagematr ix  

[ F1 = transformed image matrix 

[A] = transform matrix 

Then by matrix multiplication 

Now pre- and post-multiplication of each side of [ F] by a reverse trans- 

form matrix, [BI , gives 

w h e r e  [ f^  ] is, in general, an approximation of [ f 1. If the reverse trans- 

form matrix is the inverse matrix [A] -1 of [A], then 

But 

(2-13) 

where  [I 1 is the identity matrix. Hence 



(2-14) 

Thus, f(x, y) and F(u,  v) can be expressed as two dimensional transform 

pairs i f  [ A ]  has an inverse, 

If [ A ]  is a unitary matrix,  then by definition 

(2-15) 

T where [A*] is the complex conjugate matrix of [A]  and where [ A  1 is 

the matrix transpose of [A]. 

gonal matrix. 

A real, unitary matrix is called an ortho- 

For  such a matrix 

Finally, if [ A ]  is a symmetric orthogonal matrix then 

c A 1 - l  = [ A I  

(2-16) 

(2-17) 

If the forward transformation matrix, [ A  1, is constrained to be 

orthogonal, then the transformation can be interpreted as a decomposition 

of the image data into a generalized two dimensional spectrum. Each 

spectral component in  the transform domain corresponds to the amount 

of energy of that spectral orthogonal function within the original image. 

In this  context the concept of frequency may now be generalized to include 

transformations of orthogonal functions other than sine and cosine wave- 

forms. 

gation of specific orthogonal decompositions which are best suited for 

particular classes of images. 

This type of generalized spectral analysis is useful in the investi- 



The following subsections contain an analysis of the Fourier,  

Hadamard, Kronecker, and Eigenvector transformations with par 

emphasis on their applicability to image coding. 

2 . 2  Fourier Transform 

The discrete Fourier transform, with and without efficient compu- 

tational algorithms, has long been used for  signal analysis [ 6 1 Only 

recently have Fourier transform methods been utilized for image coding 

c9-121.  

may be expressed as 

The two dimensional Fourier transform of an image field, f(x,y),  

(2- 18) 

The inverse Fourier transform which reconstructs the original image is 

given by 

2rr i 
N 

l N - l N - l  
f(x,y) =RZ c ~ ( u , v )  exp { - 

u=o y=o 
(2-19) 

Since the transform kernels a r e  separable and symmetric the two dimen- 

sional transform can be computed a s  two sequential one dimensional 

transforms. 

The terms u and v a r e  called the spatial frequencies of the image 

in analogy with time ser ies  analysis. When the Fourier transform 

relationship is expressed in the form given by equation (2-18), the 

origin, or zero spatial frequency term appears in the corner of the 



transform plane. 

to the center of the transform domain. 

multiplying the image by the function (-l)xty before the transformation. 

Let 

For  display purposes i t  is convenient to shift the origin 

This is easily accomplished by 

N-1N-1 
X + Y  2n i 

~ ( u , v j  = - c c (-1) f(x,y) exp { - 
x=o y=o N 

But since 

in (xt y) 
(- l ) x + Y  = e  

(2-20) 

(2-21) 

the function G(u,  v) may be written as 

or 

(2-23) 

Thus, the origin moves to the center of the transform domain. 

Even though f(x,y) is a real positive function, its transform, F(u,v),  

components, 
2 

is in general complex. 

the transform contains 2 N  components, the real and imaginary or magni- 

tude and phase components of each spatial frequency. However, since 

f(x,y) is a real positive function, F(u, v) exhibits a property of conjugate 

symmetry. 

Thus, while the image contains N 

2 

To illustrate this property let  



The Fourier transform ‘can be divided into real and imaginary components 

as 

F(u, v) = FR (u, v) - i F (u, v) I 

where, since f(x,y) is real ,  

271 
N 

N-1 N-1 
c c f(x,y) cos - (uxtvy) 1 

FR(u,v) = - 
N x=o y=o 

and 

2n 
N 

N-1 N-1 1 
N FI(u,v) = - x f(x,y) sin- (uxtvy) 

x=o y=o 

(2 -2 5) 

(2-26) 

(2-27) 

The cosine is even in  u and v, and the sine is odd in u and v, hence 

FR(u,vJ = F (-U, -v) (2 -28) R 
and 

FI (u,v) = -F (-U, -v) (2 -2 9) I 
(2-30) 3f Consequently F (u, V) = F (-U, -v) 

Figure 2-1 illustrates the conjugate symmetry property of the Fourier 

transform when the zero spatial frequency term is located a t  the center 

of the transform plane. Samples in quadrants (1) and (3) a r e  complex 

conjugates of one another as a r e  samples in quadrants (2) and (4). This 

property is further illustrated by magnitude displays of the Fourier 

transforms shown in figures 1-2 through 1-4. 

symmetry property of the Fourier transform i t  is only necessary to 

As a result of the conjugate 



V 

U 

Figure 2- 1 .  Fourier Domain Quadrants 



transmit the samples of one half  of the transform plane; the other half 

can be reconstructed from the half plane samples transmitted . 
the Fourier transform of an image can be described by N d 

* 
Hence, 

2 
components. 

The two dimensional Fourier transform of an image is essentially 

a Fourier ser ies  representation of a two dimensional field. For  the Fourier 

ser ies  representation to be valid the field must be periodic. Thus, the 

original image must be considered to be periodic horizontally and verti- 

cally as shown in figure 2-2. The right side of the image therefore abuts 

the left side and the top and bottom of the image a r e  adjacent. Spatial 

frequencies along the coordinate axes of the transform plane a r i se  from 

these transitions. Although these a r e  false spatial frequencies from the 

standpoint of being necessary for representing the image within the image 

boundary, they do not impair reconstruction. On the contrary, these 

spatial frequencies are required to reconstruct the sharp boundaries of 

the image. 

The Fourier transform can be easily expressed in a matrix formu- 

lation by letting 

ws e x p { - r  217 i } 

Then 

IF1 = 

* 
A reconstruction of the original can be obtained from the half plane 
transform samples directly by a Hilbert filtering teChnique [ 91. 

(2-31) 

(2-32) 



. . .  

Repetitions of 
Original Image 

Figure 2-2. Fourier Series Representation of an Image 



where 

0 

1 

2 

3 
[AI== . 1 

e 

N - l L W  

0 1 2 3 . N-1 - 
W 0  wo wo wo . . . . .  X 0  
wD w1 w z  w3 . . e .  . w  
wo w2 w4 w6 . . e .  * w  
wo 'w3 

u ( 2 - 3 3 )  

1 

N- 1 w ( N -  1 l2 W . . . .  . . . . .  . 

The matrix is obviously symmetric. 

realized since 

Computational simplification can be 

wwE = wwE mod ( 2 - 3 4 )  

2 . 3  Hadamard Transform 

The Hadamard transform is based upon the Hadamard matrix 

which is a square array of plus and minus ones whose rows and columns 

a r e  orthogonal to one another [16-181. IdfiIis an N by N Hadamard 

matrix, then the product of N and its transpose is 

(2 -3 5) 

If H is a symmetric Hadamard matrix,  then equation ( 2 - 3 5 )  reduces to 

[ H I [ H I  = N C I ]  (2 -3 6 )  



is an 
1 A Hadamard matrix multiplied by the normalization factor - 

orthonormal matrix. 
f i  

The lowest order Hadamard matrix is the Hadamard matrix 

(2-37) 

It is known that if a Hadamard matrix of order N exists (N >2),  then 

N E O  (mod 4). 

N satisfying this requirement has not been shown, but constructions a r e  

The existence of a Hadamard matrix for every value of 

available for nearly all permissible values of N up to 200. 

construction is fo r  a Hadamard matrix of order N = 2 

integer. 

The simplest 

n 
where n is an 

In this case if  [qd is a Hadamard matrix of order N,  the matrix 

[ 2 [H2N1 = 
- ".I HN 

(2-38) 

is a Hadamard matrix of order 2N. 

matrices of order N = 2 . Another simple construction is possible i g G  1 
andyH - a r e  Hadamard matrices of orders M and N,  respectively. 

there exists a Hadamard matr ix  of order M N given by 

Figure 2-3 contains several Hadamard 
r n 
M 

Then _ _ _  N i  

g2 l H N  

. . .  ~ M I ~ N  

- - 
H ~ * ~  (2-3 9) 



Matrix Sequency 

0 

1 
N = 2 [ :  r] 

Matrix Se quenc y 

~ t 

t 

t 

t '1 N = 4  

Matrix Se quenc y 

t 

t 

- 

t 

t 

- 
t 

+ 
- 
t 

t - 
t 

t 

n 
Figure 2-3. Hadamard matrices of order N = 2 



Other constructions are given in references E19 to 211. 

known Hadamard matrices is sufficiently numerous to satisfy almost all 

size requirements for image coding. 

The se t  of 

A frequency interpretation can be given to the Hadamard matrix 

generated from the core matrix of equation (2-37). Along each row of 

the Hadamard matrix the frequency is called the number of changes in 

sign. Harmuth has coined the word "sequency" to designate the number 

of sign changes [ 22 1. F igure  2-3 gives the sequency interpretation for 

several Hadamard matrices of binary order. It is possible to construct 

a Hadamard matrix of order N = 2 n that has frequency components a t  

every integer from 0 to N-1. 

This frequency interpretation of the rows of a Hadamard matrix 

leads one to consider the rows to be equivalent to rectangular waves 

1 ranging between 2 1 with a sub-period of - units. N 
called Walsh functions [23-271 and a r e  further related to the Rademacher 

functions [28]. Thus, in this context the Hadamard matrix merely per- 

forms the decomposition of a function by a set  of rectangular waveforms 

Such functions a r e  

rather than the sine-cosine waveforms associated with the Fourier 

transform. 

n 
For  symmetric Hadamard matrices of order N = 2 , the two 

dimensional Hadamard transform may be written in ser ies  form as 

(2-40) 



N- 1 
where p(x, y, u, v) 9 C (uixi+ viyi). The terms ui, vi, Y 

i = O  
the binary representations of u, v, x, and y respectively. F o r  example 

( U ) ~ ~ ~ ~ ~ ~  n-1 n-2 ... u u ) (2-41) = (u u 
1 0 BINARY 

where u . d  { 0,l-1. 

performed modulo two. 

is for  the Hadamard matrix in "natural" form as given by equation (2-38). 

Another ser ies  representation exists for a Hadamard matrix in "ordered" 

form in which the sequency of each row is larger than the preceding row. 

In equation (2-40) the summation in the exponent is 
1 

This representation of the Hadamard transform 

By this representation 

where 

and 

- 
x=o y=o 

(2-42) 

(2-43) 

(2 - 44) 

The two dimensional Hadamard transform may be computed in 

either natural or ordered form with an algorithm analogous to the fast  



Fourier transform computer algorithm. 

2. 

of 

mathematical transformations that are amenable to highly efficient 

computer implementation. Some of these matrices may be useful for 

image coding applications. 

Consider the class of matrices formed by the kronecker product 

operation, Let the core matr ix  be square and of dimension p by p with 

entries m where i and j range from zero through p-1. 
O , i ,  j 

*- 

i H I J =  . . 
0 

m . . . . .  . . . .  m 
0,p-ltO 0, p-1 t P-1 - 

(2 -4 5) 

Here the f i r s t  index represents the class of entries corresponding 

to a particular dimension in the kronecker product operation. For  

p by p 2 matrix,ijHZ '- j f o m e d  1 by the kronecker operation 



[.Z]. 

ym,,o,o H 
H 

l , l , O  1 m 

. 

m H .... m H 
l , O , l  1 l ,O,p-l  1 

m H .... 1,1,1 1 

............... 

m H 
l , l , p - 1  1 

1,p-1,p-1 1 m 

. form the coefficients of 
1,i ,J  

In general, the class of entries m * form 

where the class of entries m 

matrices in the matrix. 

the coefficients of the submatrices in the matrix. Thus, 

n - l , i , j  

n- 1, p- l., 0 Hn- 1 L- n = l , p - l , p - l  m 

(2-47) 

is a pn by pn matrix. 

When operating with kronecker matrices within a computer, i t  

becomes desirable to s tore  a representation (algorithm) of the entries 

of the matrix rather than the matrix itself. 

the locations in the matrix to be described by their lexicographic or 

Towards this end, consider 

dictionary sequence representation. In other words, a given index of 

matr i  H can be represented by n digits each of which can take on the -1. nl 
ero through p Representing the h ontal index b 



vertical inde 

(2-48) 

Representing the u and x variables in the dictionary number system mod p 

requires n digits to allow u and x to range .over zero to pn. Therefore u 

and x can be described by 

0 . .  u u u. & [ O , l , . .  . ,p-1)  (2-49a) 1 0  1 
u = u  U n-1 n-2 

x = x  X ... x x xi & { O , l , . .  . , p - l ]  (2-49b) 1 0  n-1 n-2 

s the entires of the p by p core matrix 

o be described by the equation 

- I1 
:--I 

"one ' I  

(2 - 50) 

whenever 



a = b and zero otherwise. The representation of equation (2-50) can be 

interpreted a s  multiplying all entries of the core  matrix, equation (2-45), 

together and noting that all but one entry wi l l  be raised to the zero power. 

The entries of the p2 by p matrix, 

represented as 

equation (2-46), can now be 2 

p-1 p-1 6(x1-i)6(u1-j) p-1 p-1 6(xo-i)6(u -j)  

i = O  j = O  Li, j i=Q j=O , i , j  
0 

= n n m TI TI mQ (2-51) 

where, again, the exponents determine the correct  product of entries for 

a given u and x. In general, the entries for be represented a s  

n-1 p-1 p-1 
= TI II TI m 

r = O  i = O  j = Q  

6(x -i)6(u -j) r r 
r ,  i, j 

(2- 52) 

following the recursive notation of equation (2- 50) and (2- 51). Represen- 

tation of the rows or columns of a kronecker matrix in the form of equation 

(2-52) now allows the generation of any single element, column, or row of 

the matrix without storage of the entire matrix array.  This becomes 

particularly important for large matrices. 

In addition to representing the kronecker matrices in closed 

product form, i t  is important to also point out that vector multiplication 

with the above described matrices can be implemented on the order of 

pN log N operations where N = p is the dimension of the H kronecker 

matrix. This should be contrasted with the N operations normally 
c.3 n 

P 
2 

required. This result w a s  pointed out by Good [ 291  and leads to the 

f a s t  Fourier transform algorithm [4] as well as the f a s t  Hadamard 



described as 

r - r  

r 0, O* r,O,p-1 . rn . 
* 

r , 1 , 0 * * * ~  r ,  1 , p - 1 .  
m 

. . 
r ,  1 ,  O* r J I J p p l  

m 

........... ........... ........... 

m .. .m 
r ,  p-l,O r,p-1,p-1 . . . . 



whereas if the vector is multiplied by [ G n-j pN operations wi l l  be 

required. 

operations will be required. 

then a total of p N log 

If the resulting vector is multiplied by G , another pN 

P 

[ --3 
If this step is carried out n = log N times, 

N operations a r e  necessary. 

By using the Good algorithm described above and by using the 

P 

closed product representation of equation (2- 52) a kronecker matrix of 

large dimension can be generated and matrix-manipulated without storing 

the N term matrix. Conceivably the s e t  of coefficients m 

tion (2-52) could all be distinct, in which case  a total of (p ) 

coefficients must  be stored. However, when the class of m . are not 

all distinct, considerable savings can be achieved. 

of equa- 
2 

r , i ,  j 
2 n  2 = N 

r , i ,  J 

It is instructive to 

investigate the class of matrices generated by the kronecker operation 

with the m = m  . for all  r and s. In such a situation equation 

(2-52) reduces to 

r , i ,  j S , i , J  

n- 1 

r = O  
p-1 p-1 6(xr-i)6(u r -j) 

= ll II mi 
i = O  j=O J (2 - 55) 

2 2 
Now only p coefficients need be stored compared to pZn = N terms. 

If the general matrices described above a r e  generated from a two 

by two core matrix,  the closed product representation analogous to equa- 

tion (2-52) becomes particularly convenient to implement. Let the core  

ma trT 3 be 

(2 - 56) 



and H can be represented as 11.1 

The closed form product representation now becomes 

- -  - - 
n-1 x u  x u  x u  x u  r r  r r  r r  r r  C r D r r B r (2 - 58) 

where the exponent operations become Boolean !'and" operations, and the 

bar over the binary variable represents the complement value. Fo r  the 

case in whichA = A  , B = Bs, C = C , D = D for all r and s,  the 
r s r  r s r s  

representation again simplifies and becomes 

c x u  r r  c x u  r r  r = O  B r = O  XrUr c r = O  D r = O  
c u x  r r  

Equation (2-59) is particularly suited €or special purpose digital 

(2-59) 

imple- 

mentation as the exponent operations require simply counting the number 

of "ones I '  obtained from a parallel component w i s e  register "and" opera- 

tion on the values of u and x. 

columns, or specific elements of themat r ixH 

This means that generation of the rows, 

requires storage of only [.I 
variables (A 

n dimension N = 2 

, C ,  p) and simple register "and" operations for any 

Then to implement a vector-matrix product wi l l  

= 2N log N operations with a storage requirement of only 2 

ogonal matrix trans ormations a r e  particularly desirable 



for preserving inner products as we l l  a s  describing a generalized spectral 

analysis transform domain. A general class of orthogonal transf 

particular interest can be obtained from the kr 

r , O , O ’ *  * ’ in earlier sections by requiring that the sets of variables { m  

m 

If this constraint is  satisfied, then the matrix, H 

(2-52) becomes orthogonal and is a valid candidate for a kernel in a 

] satisfy the orthogonality requirement for all r = 0,. . . ,n-1. 

of equation (2-47) or  

r r  p-1, p-1 

II.3 
generalized spectral decomposition problem. For  the power of two case 

the orthogonality constraint on the sets [ A  , B ,C , D  ] for all r = 0, .  * .  ,n-1 

reduces to 

r r r r  

2 2 
r r A t B  = 1  (2-60a) 

2 2 
r r G t D  = 1  (2-60b) 

A C t B D  = O  ( 2 - 6 0 ~ )  r r  r r  

for  each r. In this case equation (2-58) becames the kernel of the trans- 

form and when the sets  { A  , B ,C , D  ] are all identical, equation (2-59) 

becomes the kernel. 

r r r r  

If it is desired to make the kernel matrix symmetric so that a 

transformation taken twice results in the original function again, then 

further simplifications result in the closed form representation of the 

. The requirement fo r  symmetry and orthogonality for the 

case of i entical sets [ A  , B  ,C , D  3 for all r is r r r r  ‘2 
B = C  

A t B  = I  
2 2 

(2-61a) 

(2-6 lb )  



B2 t D2 = 1 

(A t D ) B  = 0 

(2 -62b) 

(2 - 63b)' 

The entries of the matrix then become 

n-1- - n- 1. n- 1 

r = O  r =O D r = O  
c UrXr c u 0 x r c, u p r  r 

(2 - 64) 

where @ implies an exclusive "or" Boolean operation. Notice that the 

exponents can be determined by summing the result of parallel register 

operations (Boolean "and" and Boolean "exclusive or") on the variables 

u and x. However, equation (2-64), under the constraint that B = 0 

satisfying equation (2-63b), reduces to 

or 

n- 1 n-1 

r-0 
c u  4: 'r r = O  r 

D 6 (u-X) 

n-1 
x u  

6 (u-x) 
[Hn(x ,u j  = ( D Y = O  

(2-65a) 

(2-65b) 

which is a diagonal matrix, The alternative constraint to 

equation (2-63b) is that A = -D in which case more interesting orthogonal 

symmetric matrices result. Thus, 

n- 1 n-1 n- 1 

I c u r m r  c U r O  x r ' UrXr 
r =O B r = O  (.. 1f'O 

o r  

(2-66a) 



(2 - 66 b) 

where @ is the Boolean "coincidence" operation equivalent to the corn- 

plernent of the exclusive "or" operation. The class of orthogonal matrices 

described by equations (2-66a) or (2-66b) a r e  a two parameter family of 

sets of kronecker matrices subject to the constraint that A t B = 1. 2 2  

Consequently, valid 2-tuples satisfying this requirement a r e  { cos 8, sin 8 7 ,  

{ l , O ] ,  [ 3 / 5 , 4 / 5 ] ,  [ 1/ J Z ,  1 / J Z  ] and many others. Further study is 

required to determine the applicability of kronecker matrix transforms to 

image coding. 

2. 5 Karhunen-Loeve Transform 

In the transform threshold sampling technique of bandwidth reduc- 

tion, presented in Section 5, only those transform samples whose magnitudes 

a r e  greater than a threshold level a r e  coded. The optimum transform for 

minimizing the number of transform samples lying above the threshold 

while satisfying a mean square e r ror  criterion between the original and 

the reconstructed image is the Karhunen-Loeve transform [ 31,32,45,48- 52 1. 

This transform is composed of Eigenvectors of the correlation matrix of the 

original image, or class of images, to be coded. 

The Karhunen-Loeve transform is not, in general, separable. 

Hence, the original image must be regarded as a vector rather than a 

matrix. Let 



i=1 ,2 , .  . . , N ;  

If the correlation matrix is not known, i t  can be estima from an ensem- 

ble of original images. 

which [R] is to be estimated. 

Let [ f (2)1 represent the k 

Then 

The forward Karhunen-Loeve transform is 

kth of n images from 

(2-69) 

the orthogonal matrix 

composed of the Eigenvectors of the correlation matrix arranged such 

that 

(2 - 70) 

where Xl > X > .. . > X 2 a r e  the Eigenvalues of [ R] arranged in 

descending order. 

N - 2 -  - 
The Karhunen-Loeve transform, F(w),  of the original 

(2-71) 

tion 



(37) 

[B] = [ A I T  (2 - 72) 

2 If only the f i r s t  M of the N columns of [A 1 a r e  employed in the 

transform, i. e. 

u-- 
1 X M  1 x N 2  N2xM 

matrix , matrix matrix 

then the mean square e r r o r ,  E, is 

N2 

'k E =  c 
k=M +1 

(2 - 73) 

(2- 74) 

Since the h a r e  monotonically decreasing in value the e r ro r  w i l l  be k 

minimum for  any M. 

There are two major problems associated with the use of the 

Karhunen-Loeve transform for image coding. The f i r s t  is that a great 

amount of computation must  be performed. The correlation matrix must 

be estimated if i t  is not known. Next the correlation matrix must be 

diagonalized to determine its Eigenvalues and Eigenvectors, Finally, 

the transform itself must be taken. 

tional algorithm for the transform. 

In general, there is no fast computa- 

The second difficulty with the Karhunen- 

Loeve transform is that the mean square e r r o r  is not a valid e r r o r  

criterion for many types of images. 

However, for those classes of images for which the mean square 

e r ro r  criterion is valid, the Karhunen-Loeve transformation may find 

application as a standard for bandwidth reduction capability. Furthermore, 



if the image is broken up into smaller subsections the com 

- 
1 

1 

1 

1 

1 

1 

1 

1 

A characteristic of great importance for an  image transform is 

- - 

the existence of a fast  computational algorithm of the type available for 

the Fourier and Hadamard transforms. F o r  a fast  algorithm to exist i t  

- 1 1 0 0 0 0 0 0 -  

0 0 1 1 0 0 0 0  

0 0 0 0 1 1 0 0  

0 0 0 0 0 0 1 1  

1 - 0 0 0 0 0 0  

0 0 1 - 0 0 0 0  

0 0 0 0 1 - 0 0  

- 0 0 0 0 0 0 1 -  - 

is necessary that the transform be factorable into matrices containing 

many zero elements [ 331. 

As an example of matrix factorization, consider the Hadamard 

transform of order N =  8. It  can be factored as follows. 

p81; 

1 

1 

1 

1 

1 

3 

(2-75) 

Multiplication of a row vector of length 8 by the matrix on the left in 

dition operations. Mutliplication 

e factors o H requires only one 

factor, o r  a total of (1)(8)(3) = 24 
t [ 3  

rices that are factorable into 



matrices containing many zero elements. 

determining the best factorization of fact 

the only recourse in finding an efficient cornputati 

No algorithms exist for 

arbitrary transform matrix is to generate trial factorizations and com- 

pare them. 

Fast computational algorithms for the Hadhard and Fourier 

transforms are presented in Appendicies A and B respectively. 



of energy in t transform domain and bounds on the dis tio 

energy. In this section a stochastic model of transform samples is 

developed, energy bounds are derived, and equir em en ts 

to preserve the energy distribution are presented. 

3.1  Statistical Analysis 

A complete statistical description of the effects of a general trans- 

formation operator on an original image is not possible. However, consi- 

derable insight into the general statistical description can be obtained 

from the Fourier transform by the relation between the Fourier transform 

spatial frequency and the concept of the generalized frequency of a trans- 

form. 

In the statistical analysis of the two dimensional Fourier transform 

let O(x',yf) be a continuous two dimensional wide sense stationary random 

process with a bounded and continuous power spectral density, D(u, v), 

where u and v a r e  real. It is desired to observe the process over the 

2 
w, (-I,-I; I,I), and to sample the process a t  N 

ts within the window of observation. A new process, 

n both the window of observation and the sampling 

ow, is formed as follows 



The variance of F 

function, p , on the process, 0. 

(u,v) may be expressed in terms of a covariance 
N, 1 

Thus 

TI T I \  2n1 N-1N-1 2 1 
F COS - (UT t v T )  (u,v) = 2 c c eT s T ( n - ~ ) ( ~ - ~ ) p ( - -  N ' N ~  - N 

CT 
N T,T=O N,  f 

where T and T a r e  integer values representing the two dimensional shift 

($ c) with itself. The terms c and e 
' N  T 

in the sampled function 0 

are Neumann factors taking the values e = 1 and e = 2 for all T #  0. 

Equation (3-2) can be expressed as 

T 

0 7 

2 
F (u, v) = c C eTeT (1- :)@- g)p(-,, TI N,COS T I \  N 27T I (UT t vT) 

N-1 N-1 

T ,  T=O 
0 

N, 1 

This formulation is the Riemann approximating summation for large N for 

I 1  I"21 .\ - -  j p (z l ,  z2) cos 2n (uz t vz ) dz dz I 1 2  1 2  s (u,v) = c I 
-I -I 

(3 -4) 

where c is a normalization constant and the continuous variables z and 1 

respectively. From T I  TI z have replaced the sampled variables - and - 
2 N N' 

Bochner's theorem it is known that 



where R is a constant chosen s o  that D(u,v)  has the form of a probability 

density function [ 34, pg. 207). Substitution of the covariance function 

into equation (3-4) then yields 

D (u- U' , V- v') K (u' , v') du' dv' SI(u,v) = cR 1' I (3 - 6 )  

where K is the two dimensional product Fejer  kqrnel. It is known that 

S (u,v) approaches CR D(u,v) uniformly on compact sets  as I approaches 

infinity [35, pg. 21. 

variance, (T 

density, D(u,v) ,  of the process, (6. 

I 

I 
Consequently, i t  is reasonable to assume that the 

(u, v) behaves approximately a s  the power spectral 
2 
F 
N, 1 

The results of this analysis have been obtained by f i rs t  letting 

the sampling interval approach zero and then letting the window of 

observation grow. It is important to mention that if the relaxation or 

correlation radius of the covariance function, p ,  is small compared to 

the interval of observation, then it is reasonable to assurne that the 

variance, (T 

without increasing the observation window. A similar result can be 

(u, v), is already close to the power spectral density 2 
F 

N , I  . 

obtained for the discrete two dimensional Fourier transform, F (u ,  v), 

by scaling the window of observation to unity and noting that f(x,y) is the 

sampled version of the continuous process, 8 .  In this case 



(3-7) 

The above stochastic model indicates that for an  uncorrelated 

process, the spectrum tends to be flat, and the variance of the spectral 

components of the Fourier transform of f(x, y) are fairly constant over a 

large range of frequencies. Conversely, if f(x,y) is a highly correlated 

process, the variance of F(u, v) tends to be large toward the low frequencies 

and falls off rapidly toward the higher frequencies. 

that the samples, f(x,y),  a r e  identically distributed with variance V . 
I t  wi l l  be assumed 

2 

It  is convenient to express equation (3-7) in an expanded form in 

order to investigate certain limiting conditions. Therefore, 

2Tr U T  

N 

N -1 2 
p (u,v) = p ( 0 , O )  t 2 c (1- ;)P(; , 0 )  cos - 
FN 7=1 

N-1 2n vT 
N T =1 

(3-8)  

T 2n N-1 N-1 
+- 4 C C ( l - $ , ) ( . l - - , ) p ( i  , $ ) c o s  N (UTtvT),  

T, T = l  

For  a random process, f(x,y), which is constantly correlated in one 

direction, x, with correlation K, and totally uncorrelated in the other 

direction, the variance becomes 

2 
CJ (u,v) = P ( 0 , O )  - K + N  K 6 ( ~ )  
FN 

(3 - 9 )  



Equation (3-9) indicates that for highly correlated processes in one dimen- 

sion the off axis variances a r e  reduced by an amount equal to the one 

dimensional correlation, K, and the variances on the axis corresponding 

to the correlated direction a r e  increased by an amount proportional to the 

correlation K. For  the case where the one dimensional correlation equals 

the variance of the process, equation (3 - lo ) ,  all off axis variances a r e  

zero and large variances a r e  experienced on the correlation axis. For  

constant correlation, K, in both directions the variance behaves as 

2 2 
0 (u,v) = P ( 0 , O )  - K + N  K S(U,V)  

FN 
(3-11) 

and when the correlation equals the variance of the f(x,y) process, the 

resulting frequency sample variance is 

2 2 2  
0 (u,v) = N V 6(u,v) 

FN 
(3-12) 

ese results indicat a t  a process f(x,y) with constant corre-  

variance in all directions is a deterministic constant 

form equal to the Kronecker delta 

tion that is of inter 

function a t  the 

the case of total 



statistical independence of all samples in the process f(x,y). 

case the variance of F(u,v) becomes 

In this 

2 2 
[J ( U ~ V )  = V 

FN 
(3-13) 

This result indicates that for a statistically independent process all f re-  

quencies have identical variances. Under the condition of statistical 

independence of the samples, f(x,y), the variance i s  sufficient to deter- 

mine the distribution of frequency components. 

Theorem applies assuming the f (x, y) samples a r e  bounded and identically 

distributed, and in  the limit the distribution of the function F(u,v)  becomes 

normal [ 36, pg. 2941. 

The Central Limit 

It is of interest to determine how closely to the normal the distri- 

butions of frequency samples behave for  correlation in the process f(x,y). 

Work has been done in this a r ea  in the one dimensional case from the 

point of view of a strong mixing criterion for  an ergodic process [ 37, 

pg. 191 1. Also, Diananda and others have proven theorems for limiting ’ 

normal distributions f o r  the r-dependent one dimensional random process 

[ 38 1. Expansion to the two dimensional case is probable, but is not 

under taken her e. 

3.2 Energy Distribution 

If an  original image f(x, y) ranges in magnitude in units steps 

from 0 to A then the maximum magnitude of a transform sample wil l  be 

A N  and the minimum non-zero magnitude will be 1 N. 

the Hadamard 

For example, / 



domains is identical. 

from a generalization of Parseval's relationship [ 391 as follows, 

This energy equivalence relationship can be derived 

Let 

Expanding the product of the ser ies  yields 

(3-1 5) 

Now summing both sides over u and v gives 



3 . 3  Computational Accuracy 

A topic of concern for digital implementation of the transform 

’ 22 
24 
26 

coding system is the computational accuracy, and hence arithmetic 

2 56 
512 

1024 

register size, required. From considerations of the dynamic range of 

the transform domain i t  is known that the range of transform samples, 

other than the zero spatial frequency component, is A N A / 2  where N is 
2 

the number of elements per line and A is maximum amplitude of an 

element. The smallest non-zero transform sample amplitude is unity. 

If the register length is K bits including sign, then to prevent overflow 

(3-17) 

The minimum register length for a 64 grey scale image (A = 64) is listed 

below as a function of N. 

N 
%IN 

If a smaller register size is employed than SIN overflow may occur. 

The probability of overflow, P is given by 

(3-18) 

where Pf F(u, v)]  is the probability density of the amplitude of transform 

samples. If overflow is possible, i t  w i l l  generally occur a t  the lower 



spatial frequencies. 

samples is relatively large, i t  is often possible to normalize these Sam- 

ples and avoid overflow. 

arithmetic transforms which is most likely for  special purpose computer 

Since the expected magnitude of low spatial frequency 

Of course, this analysis is valid only for integer 

implementation. 

on a general purpose digital computer alleviate 

length considerations. 

Floating point operations during image coding simulations 

the need for  register 



4. Quantization of Image Transforms 

To analyze the theoretical efficiency of coding the transform of a 

scene rather than the scene itself, it is necessary to compare the entropy 

of the spatial and transform domains. Andrews has shown that the entropy 

of a scene and its Fourier transform a r e  identical (40). The result  holds 

true for any transform whose Jacobian is unity. 

transforms, though interesting, only e'stablishes that under ideal coding the 

This property of image 

scene and its transform can be transmitted with the same channel capacity. 

It remains necessary to determine quantization and coding rules for practical 

channels. 

4.1 Quantization Methods 

The selection of quantization levels can be made on the basis of mini- 

mizing the quantization e r ro r  or  achieving a uniform entropy for quantized 

sample amplitudes. In either case it is necessary to know the range and 

statistical distribution of the transform component to be quantized. 

this information is not available unless the transform is specified, quantization 

methods can only be investigated for particular transforms. Quantization 

methods for the Fourier and Hadamard transforms a r e  considered in the 

following dis cus sion. 

Since 

Fourier transform samples a re  complex numbers which may be 

In represented in real  and imaginary, or  magnitude and phase, form. 

either case there a r e  two components per transform sample that must be 

quantized. As a consequence of the statistical analysis of transform 



samples of Section 3, the real, F (u, v), and imaginary, FI(u, v), 

compo S 

R 

the sa evariance,  CJ 

to the power spectral density of the original image. Hence 

(4- la) 

If the real  and imaginary components a r e  Gaussian, the magnitude of the 

Fourier transform sample, F (u, v), is Rayleigh distributed M 

and its phase, F (u,v), is uniformly distributed 
P 

(4-2b) 
1 

PC F p ( U ’ 4 l  = - n < F  <+IT - P- 

Hadamard transform samples a r e  real, bipolar numbers which can 

be represented by a single component per sample. 

statistical distribution of Hadamard sample components, F (u,v), will  be 

C 

For this analysis the 

H 

d to follow a Gaussian distribution of the form, ‘ 



2 When the variance function, (T (u, v), is not known for a particular 

image, or  class of images, to be transformed, the function can usually be 

modeled without seriously affecting the quantization process. 

examination of the Fourier and Hadamard transforms of a typical image, 

it can be deduced that the variance function should be a maximum at the 

origin in the transform domain, be circularly symmetric, and decrease in 

From 

magnitude monotonically toward the higher spatial frequencies. 

dimensional function processing these characteristics is the Gaussian 

curve described by 

A two 

(4-4) 

where S is an amplitude scaling constant and p is a spread control constant. 

In the quantization analysis the transform sample component to 

be quantized (amplitude, real  pazt, imaginary part, magnitude, or  phase) 

is  represented by the function F ( u,v). 

broken up into K positive and K negative bands separated by quantization 

levels Q. ( j  = 0, t l ,  22, * a *  , - t K) where 

The range of the component i s  
C 

J 

Q, = 0 (4- 5a) 

NA Q K =  - 2 
NA Q-K= - - 2 

(4-5b) 

(4-5c) 

The magnitude of a sample need only be quantized over the positive scale. 

If a transform component falls in a band bounded by quantization levels 

and Q the component is quantized, and subsequently reconstructed, to 
*j- 1 j’ 



quantization lev 

r e  construction 
levels 

-K F F-2 F -1 F1 FK- l  FK 

I A A A A A A 
I I I I 

NA Q 1 * * * Q K  Q = + -  NA QmK= - - 2 *-K+; ' -1 *o -1 K 2 

quantization 
levels 

Table 4-1 lists some e r ro r  cri teria that might be considered in 

the selection of transform quantization and reconstruction levels. In 

general the e r ro r  cri teria chosen will depend upon the application of the 

reconstructed images; for example, whether the image is to be used for 

subjective viewing or photometric measurements. 

For  subjective viewing the relative spatial e r ro r  for low brightness 

images provides an indication of image quality. This relative spatial e r r o r  

criterion is predicated upon the fact that incremental brightness changes in the 

reconstructed image are much more noticeable if the brightness level is 

Thus, to minimize the relative spatial e r ro r ,  the n i f  it is high. 

antization level in the spatial domain should be greater at  the 

1s. since the b r i  e s s  of every point of a 



TABLE 4-1 

Quantization Er ro r  Criteria 

Cumulative mean square 
spatial e r ror  

Cumulative mean square 
transform e r ro r  

Cumulative spatial e r ror  

Cumulative transform e r ro r  

Relative spatial e r ro r  

Relative transform er ror  

t x = o  v=o 

u=o v=o 

d 

F(u, v) = quantized value of F(u, v) 

f(x, y) 
rJ = inverse transform of quantized value of F(u, v) 



reconstructed image is a function of the amplitude of a single transform 

sample, then by the same reasoning, the density of quantization levels 

should be greater for low level transform samples. From psychological 

tests, it is known that the human viewer i s  very sensitive to the location 

of high frequency brightness transitions, but relatively insensitive to their 

actual magnitude. 

filtering often appear preferable to the original image. 

of subjective viewing it would seem that t he density of quantization levels 

a t  low transform sample amplitudes should be greater a t  the higher spatial 

frequencies than a t  the lower spatial frequencies, 'Ilks, from the standpoint 

of subjective quality, the "best" quantizer should have a nonlinear 

characteristic such that the density of quantization levels over the range of 

the amplitude of the transform sample component to be quantized is: 

In fact images which have been "crispened" by high pass 

From this characteristic 

a) greater a t  its lower values for a given spatial frequency 

b) greater a t  the higher spatial frequencies for a given amplitude 

Figure 4-1 exhibits several quantization laws that a r e  useful for 

quantization under a subjective viewing e r r o r  criterion. The uniform o r  

linear quantizer is commonly employed for quantization of the phase of 

Fourier transform samples. 

function 

The Gaussian quantizers follow the mathematical 



a) Linear Quantizer 

b) Gaussian Quantizer 

c) Logarithmic Quantizer 

Figure 4- 1 Qunatization Rules 



component, F (u,v), where 
C 

2 2 
erf(x) i 17 sx expl -z ] dz (4-7) 

is the Gaussian e r r o r  function and K(u,v) is a two dimensional positive 

function monotonically decreasing with u and v. The Gaussian quantizer 

has the desired property that the spacing of quantization levels is closer for the 

lower amplitudes of F (u,v) a t  a given spatial frequency u,v and closer 

for the higher values of v and u a t  a given value of F (u, v). 

i f  K(u,v) is set equal to the standard deviation of the transform samples, 

C 

Furthermore, 
C 

a(u,v), then the probability that a transform sample will be quantized to 

a given reconstruction level will  be the same for all quantization levels. 

This results in a uniform entropy for  all reconstruction levels, and 

therefore, a constant word length code may be used for each quantized 

sample. The logarithmic quantizer follows the function 

in the positive quadrant and the inverted and reversed version of the function 

negative quadrant. This function has the same general characteristics 

s not produce an equal entropy for r, bu 



If photometric measurements a r e  to be made on an image the 

cumulative mean square spatial e r ro r  is a common fidelity criterion. 

For such a situation the quantization levels in the transform domain must 

be selected to minimize the cumulative mean square e r r o r  in the spatial 

domain. Let 

N-1 N-1 2 

x=o y=o 
ds = 2 Cf(x,y) - Z X , Y ) l  

d 
represent the cumulative mean square spatial e r r o r  where f(x, y) is the 

image reconstruction from the quantized transform samples, F(u, v) 
e 

Then, in a 

N- 1 

x=o 
8 = r, 

where [B] 

matrix formulation 

(4 - 9) 

N- 1 N-1 N-1 c ECBltFlCBI - pB3c~lcB3 f = c c cB1cF-~12cB1 (4-10) 
y=o x=o y=o 

represents the reverse  transformation matrix. 

Minimization of CS in the spatial domain therefore can be accomplished 
S 

...2 
by the minimization of the mean square e r ro r ,  CS(u,v) ZtF-F] , in the 

transform domain for all spatial frequencies. 

In the case of the Fourier transform the mean square e r r o r  of 

each component of a transform sample must be minimized. 

e r ro r  of a transform component may be written in explicit form a s  

The mean square 

(4- 11) 



where 

and 

where p(F ) is the probability density of the transform sample component 

to be quantized. 

C 

If p(F ) is a symmetrical probability density about 
C 

= 0, then 8+(u,v) equals 8 (u,v). Regardless of the form of p(F ) the - C 

quantization rule determined by the minimization of 6 (u, v) is the same t 

as that determined from $ (u,v) because of the symmetry of the quantization - 
scale. Hence, only 8 (u, v) will be considered in the following analysis. 

t 

For a large number of quantization levels the probability density 

of the transform samples may be represented by a constant value, p(Fj), 

over the quantization band. Hence, 

The optimum placing of the reconstruction level F. within the range Q to J j-  1’ 

Q. can be determined by minimization of 8 (u,v) with respect to F.. 
J t J 

Setting 

(4- 13) 



yields 

Q. t Q.-l 
2 

(4- 14) F =  
j 

Therefore the condition for minimizing 8 (u,v) in the range Q to t j-1 

is to place the reconstruction level F. at  the midpoint between each pair 
Qj J 

of quantization levels. 

quantization levels for  the constraint of equation (4-14) is shown below. 

The general relationship between reconstruction and 

F 
j F j t l  

reconstruction 
levels 

1 A A . 1- v 

j A j ' j t ~  A 

Q 
'j- 1 j 

quantization 
levels 

j+ 1 
h 

*j+l 

Hence, 

and 

where 

= F . - A  Qj- l  3 j 

Q.-Q.-, 
A =  
J 2 

(4-15) 

(4-16) 

(4-17) 

With the value for F. from equation (4-14) substituted into equation 

(4-12) the mean square transform e r ro r  becomes 

J 



Now, by the definition of the inte ble 

to write 

(4-19) 

where the value of the integral, K ,  is a constant only depending upon its 

limits. Thus, the problem of minimizing (% (u, v) with respect to the 

reconstruction levels Q. reduces to minimizing the sum of cubes of a 

variable in equation (4-18) subject to the constraint of equation (4-19) that 

t 

J 

the sum of the variables is constant 

8 (u,v) is minimized whenb [F.!)CQ.-Q. ] is identical for all K 

quantization bands. Under this condition 

By the method of Lagrange multipliers 
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t J .  3 3-1 

and 

The quantization levels can be determined from the formula 

= 2 A 1  t 2A2 t * * *  t 28 t A Qj j-1 j 

(4-20) 

(4-21) 

(4-22) 

uation (4- 20) 



Y L\ =-- 
4 j 2K{P *' Wjl} 

Therefor e, 

This ser ies  may be approximated by the normalized integral [47] 

(4-23) 

(4-24) 

(4-25) 

As an example of the computation of quantization levels by equation 

The quantization levels 1 (4-25) consider the case for which p(F) = - 
a r e  then Q. = 

NA 

for j = 1 , 2 , * * *  # K* 
&A 

J 2K 
2 

If p(F) is a Gaussian distribution with variance u (u, v) then Q. is 
J 

given by 

(4-26) 



The quantization levels computed from equation (4-26) a r e  more closely 

spaced for j small in the same general manner as the Gaussian or  

logarithmic quantizer, 

Examples of image transform quantization for the Fourier and 

Hadamard transform using the uniform and Gaussian quantization laws 

a r e  presented in  the following subsection. 

4.2 Quantization Experiments 

Reconstructions of the Fourier transform of the Surveyor spacecraft 

scenes with linear and Gaussian quantization a r e  shown in Figure 4-2. 

For both quantization rules 64 levels have been employed. 

quantization rule utilized a Gaussian shaped variance parameter with a 

spread control constant, p = 500. 

The Gaussian 

Results with the linear quantizer for the 

footpad scene a r e  poor because of the large quantization e r r o r s  a t  high spatial 

frequencies. 

and box scenes show negligible image degradation. 

The Gaussian quantizer reconstructions for  the footpad, boom, 

Figure 4-3 illustrates tests to determine the effect of few quantization 

levels with the Gaussian quantizer 

made with the Fourier transform samples quantized to 32 and 16 levels with a 

Gaussian shaped variance function with p = 500. 

these pictures is due to the quantization e r r o r s  a t  high spatial frequencies. 

In these tests reconstructions have been 

The loss of resolution in 

If the Gaussian quantization rule is to be practical it is imperative 

that a variance function can be chosen for a wide class of scenes without 

detailed knowledge of the content of these scenes. Figure 4-2 shows that the 



a) Inverse Fourier Transform b) Inverse Fourier Transfrom of 
of Linearly Quantized 
Fourier Transform of Footpad Transform of Footpad, p = 500 

Gaus sianly Quantized Fourier 

c )  Inverse Fourier Transform d) Inverse Fourier Transform of 
Gaussianly Quantized Fourier 
Transform of box, p = 500 

of Gaus sianly Quantized Fourier 
Transform of Boom, p = 500 

Figure 4-2. 64 Level Quantization of Fourier Transform 



a) Inverse Fourier Transform of 
Gaussianly Quantized Fourier 
Transform - 32 levels 

b) Inverse Fourier Transform 
of Gaus sianly Quantized Fourier 
Transform - 16 levels 

Figure 4-3. 32 and 16 level Gaussian Quanitzation 
of Fourier Transform of Footpad, p = 500. 



Gaussian shaped variance function with the spread control parameter 

p = 500 provides satisfactory reconstructions for three different scenes. 

It i s  also of interest to determine the effect of changes in the variance 

function. 

with 64 quantization levels for a Gaussian shaped variance function with 

a spread parameter of p = 250 and 1000, and with a I (sinc au) (sinc av) 1 
shaped variance function. 

performance of the Gaussian quantizer is relatively insensitive to the exact 

mathematical form of the variance function. 

Figure 4-4 contains reconstructions using the Gaussian quantizer 

These experiments indicate that fortunately the 

The same set  of quantization experiments has been performed for 

quantization of Hadamard transform samples with essentially the same 

results and conclusions. 

Figures 4-5 to 4-7 a r e  self explanatory. 

The results of these experiments shown in 

The conclusion of the quantization experiments for the Fourier and 

Hadamard transform i s  that good quality reconstructions a r e  possible when 

the transform samples have been quantized to a s  few as 64 levels using 

the Gaussian quantization rule and a Gaussian shaped variance function with 

an appropriate spread control parameter. 



a)  Inverse Fourier Transform b) Inverse Fourier Transform of 
of Gaussianly Quantized Fourier 
Transform with a Narrow 
Gaussian Shaped Variance 
Function, p = 250 

Gaus sianly Quantized Fourier 
Transform with a Wide Gaussian 
Shaped Variance Function, p = 1000 

c) Inverse Fourier Transform of Gaussianly 
Quantized Fourier Transform with a 
1 (sinc au)( sinc av) I Shaped Variance 
Function 

Figure 4-4. 64 Level Gaussian Quantization of Fourier Transform of 
Footpad with Different Variance Functions 



a) Hadamard Transform of b) Hadamard Transform of Gaussianly 
Linearly Quantized Hadamard 
Transform of Footpad 

Quantized Hadamard Transform 
of Footpad, p = 1500 

c )  Hadamard Transform of d) Hadamard Transform of Gaussianly 
Gaussianly Quantized Hadamard 
Transform of Boom, p = 1500 

Quantized Hadamard Transform of 
Box, p = 1500 

Figure 4-5. 64 Level Quantization of Hadamard Transform 



a) Hadamard Transform of 
Gaus sianly Quantized Hadamard 
Transform - 32 levels 

b) Hadamard Transform of 
Gaussianly Quantized Hadamard 
Transform - 16 levels 

Figure 4-6. 32 and 16 Level Gaussian Quantization of Hadamard 
Transform of footpad, p = 1500 



a) Hadamard Transform of b) Hadamard Transform of Gaussianly 
Gaussianly Quantized Hadamard Quantized Hadamard Transform 
Transform with p = 500 with p = 1000 

c) Hadamard Transform of d) Hadamard Transform of Gaussianly 
Gaussianly Quantized Hadamard 
Transform with p = 2000 

Quantized Hadamard Transform 
with p = 5000 

Figure 4-7. 64 Level Gaussian Quantization of Hadamard Transform 
of Footpad with different Gaus sian shaped Variance 
FLinc tions 



5. Bandwidth Reduction 

Transmission of the transform of an image rather than the image 

itself opens up a wide area of investigation for the development of image 

transform bandwidth reduction techniques. Such techniques may be 

divided into two categories: those which are based upon the unique 

structure of the energy distribution in the transform plane, and those 

that seek to apply conventional spatial domain bandwidth reduction methods 

to the transform domain in  a manner rather independent of its energy 

distribution. In general, the former class of methods provide the best 

performance. Attempts to apply spatial domain bandwidth reduction 

techniques to transform samples have not prove successful [ 9 1 because 

of the large dynamic ranges of transform samples and their relative lack 

of correlation with one another. 

5.1 Transform Sampling 

Many transform bandwidth reduction techniques can be analyzed 

Figure 5-1 illustrates from the viewpoint of two dimensional sampling. 

a generalized block diagram of a transform sampling system. 

forward transform of an image, F(u, v), is multiplied by a two dimen- 

sional sampling function, S(u,v), which takes on the values zero or one 

according to some apriori  or adaptive rule. 

methods are listed in Table 5-1. 

individually in subsequent subsections. 

The 

Several transform sampling 

These methods wi l l  be considered 

With reference to figure 5- 1, the sampled transform, Fs (u, v), 
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is simply 

A 

After decoding F (u, v) is reconstructed and the reverse transform pro- 
S 

n 

duces f (x,y). 

is an important topic which wi l l  be considered in  the next section. 

The effect of channel e r ro r s  on reduced bandwidth signals 
S 

For  

this analysis the transmission wi l l  be assumed to be errorless.  With 

this assumption the factor of greatest importances becomes the closeness 

with which the reverse transform of F (u, v) approximates the original 
S 

image, f (x,y). Taking the reverse transform of F (u,v)  yields 
S S 

N-1 N-1 

u=o v=o 
fs (x, y) = C F ( u ,  v) S(U, v) b(x, ys ut v) 

Since 

(5-2) 

(5-3) 

the system output image may be expressed a s  

Upon changing the order of summation 

From equation (2-8) the product of the transformation kernels is 



The second summation is then reco of 

s (u, v) evalua a t  the point ,f3 -y in the spa 

represents the spatial convolution denoted by the symbol 63, of the original 

image, f(x, y), with the reverse transform of the sampling function, S(U,V). 
t 

In general, any sampling function can be expressed as 

1 t R(u,v) 
2 S(U,V) = (5-8) 

where R(u,v) takes on the value 

u and v. 

1 a s  a function of the spatial frequencies 

The reverse transform of the sampled transform domain is then 

where r(x,y) is the reverse transform of R(u,v). Thus, the reconstruction 

of the sampled image is composed of the original image plus some additive 

interference that is dependent upon the form of the original image and the 

sampling function. 

As an example of deterministic sampling, consider a sampling 

function 

(5- 10) 

which samples the Fourier transform of an image in a checkerboard 



pattern. Fo r  this case 

R(u,v) = (-l)u+v = exp 1 in (u+v) 3 (5-11) 

and i ts  inverse Fourier transform is 

N-1 N-1 

u=o v=o 

-2ni 
r k y )  = C C exp [im(u+v)) exp { - N (ux +vy)} (5-12) 

or 

Hence, the reconstructed image 

(5-13) 

(5- 14) 

is composed of the original image overlaid by the original shifted hori- 

zontally and vertically by one-half its size. Figure 5-2a illustrates the 

experimental verification of this effect for the footpad scene. 

A non-deterministic sampling procedure that has been considered 

is one in which R (u, v) is a random variable assuming the values 2 1 If 

this random variable is-*highly uncorrelated, the additive interference is 

spread out over the reconstructed image. This technique has been inves- 

tigated for random sampling of the Fourier transform of an image in which 

50% of the transform components have been sampled a t  random positions 

to yield a bandwidth reduction of 2 : 1. 

footpad scene is shown in figure 5-2b. 

the convolutional interference produces a significant amount of image 

The reconstructed image of the 

With this type of random sampling 



a) Checkerboard Sampling 

b) Random Sampling c) Random Sampling of High Spatial 
F r e quencie s Only 

Figure 5-2. Checkerboard and Random Sampling of Fourier 
Transform 



degradation. Distortion in this image is due principally to the convolution 

of the high brightness, and low spatial frequency, portion of the footpad 

over the image surface. To overcome this difficulty only the highest 90% 

of the spatial frequencies of the image were randomly sampled. The low 

spatial frequencies w e r e  completely sampled. The reconstruction in 

figure 5-2c for  this type of sampling shows some improvement, but the 

image distortion is still severe. 

5.2 Zonal Sampling 

In most scenes of interest there is a fairly high degree of corre- 

For  these types of images the lation between adjacent image elements. 

energy in the transform plane tends to be clustered a t  certain spatial 

frequencies. 

Figure 5-3 illustrates the percentage of energy within a circle 

centered at the origin of the Fourier transform plane for the three Surveyor 

spacecraft scenes. 

contained in 1% or less  of the Fourier domain samples. 

energy distribution such as that shown in figure 5-3 the most obvious 

method of conserving bandwidth is simply to not transmit the high spatial 

frequency information. 

lent to passing the image through a circular, zonal low pass filter; the 

result is a loss of focus. Figures 5-4 and 5-5 show the effect of zonal 

low pass sampling of the Surveyor spacecraft footpad and box scenes. 

These experiments support the widely known fact that the high frequency 

For all three scenes 95% of the image energy is 

With an  image 

Discarding the high spatial frequencies is equiva- 



J 
0 
9 



a) 99. 8% energy transmitted, 
32:l BWR 

b) 99.9% energy transmitted, 
8:1 B W R  

c )  99.99% energy transmitted, 
4:l BWR 

Figure 5-4. Low Pass  Zonal Fourier Transform 
Sampling - Footpad 



a) 98. 3% energy transmitted, b) 99.8% energy transmitted, 
32:l BWR 8:l BWR 

c) 99. 9'70 energy transmitted, 
4:l BWR 

Figure 5-5. Low Pass Zonal Fourier Transform Sampling - Box 



brightness transitions are important even though they are relatively 

few in nwnber and contain a low proportion of the image energy. However, 

if some degree of resolution loss is acceptable, zonal low pass filtering 

of the Fourier domain does yield relatively large bandwidth reductions. 

Zonal low pass sampling o r  filtering can also be performed in the 

Hadamard transform domain. 

lowest 25% of the Hadamard domain spatial frequencies of the footpad 

scene. 

filtering of the Hadamard transform than for the Fourier transform for 

the same bandwidth reduction factor because of the rectangular shape of 

the two dimensional Hadamard reconstruction waveforms. 

very sensitive to the presence of sharp brightness transitions within an  

image. 

element, whereas in the Fourier transform the brightness transitions a r e  

spread over many elements since the reconstruction waveforms are two 

dimensional sinusoids. 

Figure 5-6 illustrates a reconstruction of the 

The image degradation tends to be more  noticeable for zonal 

The eye is 

With the Hadamard transform all transitions occur within one 

5.3 Threshold Sampling 

The difficulty with the zonal filter sampling method of bandwidth 

reduction is that large magnitude samples are indiscriminately discarded. 

An obvious answer)to this problem is to code only those samples whose 

magnitudes a r e  above a given threshold level. With this coding method 

i t  becomes necessary to provide information as to the location of signifi- 

cant samples. 



Figure 5-6. Low Pass Zonal Hadarnard Transform 
Sampling - Footpad 



Selection of a threshold level for a given transform is generally 

a compromise between the number of samples deleted and the e r ro r  

resulting from the deletion of samples. If a constant threshold is chosen, 

then the maximum magnitude of deleted samples wi l l  be independent of 

spatial frequency, but the probability of deleting a given sample wi l l  

usually be a function’of its spatial frequency. 

threshold is chosen to be linearly dependent upon the variance of samples, 

the deletion probability in most cases wi l l  be constant for all samples, but 

On the other hand, if the 

the deletion e r r o r  will be a function of spatial frequency. 

threshold can only be determined analytically for a given e r ro r  criterion. 

Fo r  transform threshold coding the “best” transform is one which 

maximizes the number of transform samples which a r e  zero or  near zero 

when the e r ro r  criterion is satisfied. I t  has been pointed out in Section 2 

that to minimize the mean square e r ro r  between an original signal and a 

transform reconstruction for threshold sample deletion, the optimum 

transform is composed of Eigenvectors of the correlation matrix of the 

The “best” 

data. Since mean square e r r o r  has not proven an effective measure of 

e r ror  between images, the usefulness of this transform remains in doubt. 

Further investigation of the application of the Eigenvector transform to 

image coding is required. 

For a given transform the expected bandwidth reduction achievable 

with threshold sampling of the transform domain can be estimated if the 

probability distribution of the magnitude of transform samples is known. 

Let M(u, v) E 1 F(u, v) 1 = magnitude of a transform sample and 



P[ M(u, v)] = probability distribution of the magnitude of transform 

samples then 

sample 

The expected number of samples above the threshold, N is then given 
T'  

by 

= E: c P(u,v) 
u v  NT (5-16) 

where the limits of the summation are dependent upon the type of trans- 

form employed. * 

Consider f i rs t  Fourier threshold sampling. If i t  is  assumed that 

the probability density of the real and imaginary components of transform 

samples are Gaussian with a variance function r~ (u, v), then the magnitude 
2 

of a transform sample becomes Rayleigh distributed with a distribution 

n the probability that the sample magnitude is greater than the threshold, 

MT (ut VI,  is 

2 

(5-18) I- 
- cMT (us V) 1 

(UP v) 

As a res e co mmetry property of the Fourier transform, 



only one half of the transform samples need be considered. The expected 

number of these samples above the threshold is given by 

In the special case for which the threshold is linearly dependent upon the 

variance, i. e. , 

M (u,v) = k G ( u , v )  T T (5-20) 

where 5 is a constant, the expected number of samples above the thresh- 

old is simply 

2 
- - - N2 e x p { - T }  kT 

NT 2 

The transform sample reduction is then 

(5-21) 

(5-22) 

For  the Hadamard transform the magnitude of the samples can be 

modeled as  a Gaussian distribution. 

Then the probability that a transform sample exceeds the threshold 

becomes 



where 

(5-24) 
MT(U,V) 

Jz cJ(u,v) 

erf E 1 (5-2 5) 
J 
0 

is the Gaussian e r r o r  function. The expected number of transform Sam- 

ples above the threshold is 

N-1 N-1 

u=o v=o 
= c c [ l - e r f  NT (5-26) 

And for the special case for which M (u, v) = kTO(u, v), the transform 

sample reduction becomes 

T 

NZ - 1 

NT 
- -  

[ 1 - e r f (  -)] kT 
Jz 

(5-27) 

From the preceding analysis i t  is seen that if the variance factor 

2 
0 (u, v) is known for a particular class of images, the expected bandwidth 

reduction factor can be easily computed for Fourier and Hadamard thresh- 

old sampling with a given threshold level. The amount of image degrada- 

or a given threshold level must be determined a t  present by a sub- 

jective evaluation or comparative measurements. 

Transform threshold coding experiments have been performed 

for the Fourier and Hadamard transforms. Figures 5-7 and 5-8 show the 

tion of samples above a threshold and the corresponding reconstructions 



a) Map of Samples above 500 b) Fourier Transform of 500-level 
Thresholded Samples 

c) Map of Samples Above 100 d) Fourier Transform of 100-level 
Thre sholded Samples 

Figure 5 - 7 .  Fourier Transform Threshold Sampling withHigh 
and Low Thresholds - Boom 



La- 

a) Map of Samples Above 300 b) Fourier Transform of 300-level 
Thresholded Samples 

c) Map of Samples Above 200 d) Fourier Transform of ZOO-level 
Thre sholded Samples 

Figure 5-8. Fourier Transform Threshold Sampling with 
Intermediate Thresholds - Boom 



from these samples for  the Fourier transform of the boom scene. If 

the threshold becomes too high, the loss of the high spatial frequency 

samples becomes noticeable. For  this scene a threshold level of 200 

provides good quality reconstructions. In this particular scene the mag- 

nitude of the largest, non-zero, spatial frequency is 53,186. The number 

of Fourier domain samples in the half plane above the threshold, and the 

equivalent sample reduction, a r e  listed below. 

Number of Fourier Domain 
Threshold Level Samples Above Threshold 

100 13,402 

200 4,887 

300 2, 532 

Sample 
Reduction 

2.4 

6.2 

12.9 

Figure 5-9 illustrates the results of the Fourier transform threshold 

coding experiment for the box scene. Again, a threshold level of 200 

provides a good reconstruction. 

Similar results have been obtained for threshold coding of 

Hadamard transform samples. 

of significant samples of the Hadamard transform of the box scene. 

Figure 5-10 shows maps of the location 

In order to achieve a bandwidth reduction with this threshold 

technique of sample deletion i t  is  necessary to code the positions of the 

significant samples as well as their values. 

adds to the transmission bandwidth. 

the number and location of significant samples in order to determine 

Position coding, of course, 

Statistical data has been obtained on 



a) Map of Samples Above 300 b) Fourier Transform of 300-level 
Thresholded Samples 

d) Fourier Transform of 200-level 
Thresholded Samples 

Figure 5-9. Fourier Transform Threshold Sampling with 
Intermediate Thresholds - Box 

( 9 0 )  



a) Map of Samples Above 800 

b) Map of Samples above 400 

Figure 5- 10. Hadamard Transform Threshold Sampling with 
Intermedi ate Thresholds - Box 



useful codes and evaluate the amount of bandwidth reduction possible. 

Figure 5- 11 is a plot of run lengths of significant samples of the Fourier 

transform of the box for the threshold se t  a t  level 200. Fo r  this scene 

the number of run lengths greater than 16 elements is small s o  that the 

run lengths can be truncated to 16 without appreciably affecting the distri- 

bution. Fo r  a sample run length position code with a constant word length 

of 4 bits, a bandwidth reduction of greater than 4 : 1 is possible for this 

scene. A Huffman variable length code would result in a slightly higher 

bandwidth reduction factor. 
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Run Lengths of Significant Samples 
For  Fourier Threshold Coding of 
Box at  Level 200 

0 10 20 30 40 50 

Figure 5- 11. Run lengths of Significant Samples for Fourier 
Transform Threshold Sampling of Box at 
Level 200. 



6. E r r o r  Tolerance 

The major advantage of image transform coding other than its 

potential for bandwidth reduction is the tolerance to channel e r ro r s  that 

transform coding affords. 

transform coding combined with e r ro r  correction coding of transform 

samples provides a means of image coding for which channel e r rors  a r e  

less  deleterious than for conventional spatial coding of an image. 

The inherent "error averaging" property of 

To  illustrate the e r r o r  tolerance feature of transform coding a 

binary symmetric channel will.be assumed as a model for the channel. 

In the binary symmetric channel shown in figure 6-1 the probability of 

receiving an incorrect symbol is given by p for the transmission of ones 

or zeros. 

6.1 Channel Noise Effects 

An intuitive justification for transmitting the frequency rather 

than the spatial domain of an  image is the fact that for many transforms 

the channel noise introduced in the transform of an image tends to be 

distributed evenly over the entire reconstructed image. 

the noise manifests itself as  a low frequency effect in reconstruction. 

Since the eye is more sensitive to the high frequency "salt and pepper" 

effect of channel noise in the spatial domain, the same channel noise 

power in the frequency domain is somewhat less  offensive. 

shows a mid-grey scene af ter  having passed through a channel with 

probability of e r r o r  of 0.1. 

the output of the same channel whose input w a s  the Fourier transform of 

Consequently 

Figure 6-2a 

Figure 6-2b is the Fourier transform of 



0 

1 

Figure 6-1. Model of a Binary Symmetric Channel 



a) BSC Noise in Spatial Domain b) Fourier Transform of BSC in 
Fourier Domain 

Figure 6-2. Binary Symmetric Channel Noise with 
Error Rate p = 10-1 



the mid-grey scene. 

but that energy is distributed quite differently. A quantizing and coding 

method can be developed to take advantage of the inherent high frequency 

or "salt and pepper" noise immunity that Fourier domain coding offers. 

As a f i r s t  step in this direction, a requirement wi l l  be made that each 

quantum level occur equally likely as any other quantum level. 

quantization criterion wil l  guarantee that each code word is equally likely 

to occur and wi l l  avoid any unexpected noise biasing, since the binary 

symmetric channel effects each code bit, and therefore each code word, 

independently of all others. 

Both scenes have the same amount of noise energy 

This 

Figure 6 - 3  contains a ser ies  of experimental results for the 

Fourier transform of the footpad scene using the Gaussian quantization 

l a w  with the transform domain variance changing as a function of fre- 

quency according to the power spectrum of the original scene. 

footpad and its quantized Fourier transform a r e  passed through the same 

binary symmetric channel for two different e r r o r  probabilities. These 

pictures a r e  presented to demonstrate a further complication that must 

be avoided. The frequency induced noise energy is concentrated in low 

frequency variations which a r e  so large that the high frequency information 

is lost due to normalization in reconstruction. This can be explained by 

the fact that the absolute, as opposed to the relative value of a bit e r ro r  

is much larger in the regions where the power spectrum is large. 

power spectrum of most  images, the larger values occur a t  the lower 

frequencies, and thus the lower frequency noise e r ro r s  have a greater 

The 

In the 



- 3  
a) Er ror  Rate in the Spatial b) 10 Er ro r  Rate in the Fourier 

Domain Domain 

c) 10-1 Er ro r  Rate in the Spatial d) 10-l E r ro r  Rate in the Fourier 
Domain Domain 

Figure 6 - 3 .  Binary Symmetric Channel Noise in Spatial 
and Fourier Domain Transmission 



effect on the reconstructed image in the spatial domain. 

demonstration of this effect is afforded by figure 6-4. 

Further 

Figures 6-4a and 

-1 
6-4b are the footpad noise scenes with e r ro r  rates of 10 

the space and frequency domain respectively. 

of the same e r ro r  rate channel noise in the frequency domain but with 

20 x 40 or 800 of the lowest spatial frequencies transmitted e r ro r  free. 

It is evident f rom figure 6-4c that the noise energy is now concentrated 

in the higher frequencies. Figure 6-4d has the lowest 6500 spatial fre- 

quencies transmitted e r ro r  free. 

introduced in 

Figure 6-4c is the result 

6 . 2  Erro r  Correction Transform Coding 

As a result of the statistical regularity of samples in the frequency 

domain, a much smaller amount of e r ro r  correction in this domain wil l  

yield a far better noise immunity than the same amount of e r r o r  correc- 

tion in  the spatial domain. 

e r rors  in certain positions of the frequency domain a r e  much more 

bothersome than in other positions due to the large statistical variance 

The nature of the quantization l a w  is such that 

of samples a t  these frequencies. Therefore, i t  is natural to develop a n  

e r r o r  correction rule to correct  for e r ro r s  only in these large variance 

regions. One such rule would be to e r ro r  correct code those frequency 

samples which correspond to positions in the frequency domain where the 

power spectrum of the covariance function indicates a high probability of 

large sample values. 

bandwidth to facilitate the e r ro r  correction. However, i t  has been found 

This technique alone requires an increase in 



a) 16' Error Rate in the Spatial b) 10-1 Error Rate in the Fourier 
Domain Domain 

c) Reconstruction with the 800 d) Reconstruction with the 6500 
Lowest Spatial Fr equencie s 
Errorless 

Lowest Spatial Frequeacies Errorless 

Figure 6-4. Effect of Low Frequency Errors 



that the small increase in bandwidth in the Fourier domain wi l l  result 

in far better reconstructions than the same increase in the spatia 

It is important to emphasize that the coding techniq 

Fourier domain should be tailored to a particular channel capacity. 

ain. 

If 

-3  
the channel noise has an  e r r o r  rate less  than about 10 

that no e r r o r  correction is necessary as in figure 6-3b. However, under 

the circumstances of a high e r r o r  rate, i t  often becomes more desirable 

to transmit as many e r r o r  corrected samples a s  possible a t  the expense 

of not transmitting the entire frequency plane. 

, then it appears 

Using such a system, 

corrected, but not necessarily e r ror less ,  data could be received until 

normal picture bandwidth has been reached, a t  which time transmission 

is terminated. 

code must be selected. 

In order to implement such a scheme, an e r ro r  correcting 

The code selected w i l l  depend on how much of the 

frequency domain wi l l  be omitted due to the' increased e r ro r  correcting 

capability of the code. 

the variety of coding implementations possible for different channel 

conditions. 

The main point of this discussion is to illustrate 

A specific example of the potential of the Fourier coding technique 

is presented below. A high e r ro r  rate channel is assumed with rate 

p = 4 x 10 . The equal bandwidth criterion is assumed. Consequently, 

the Fourier coding technique requires exactly thesame bandwidth as  con- 

ventional spatial domain transmission systems. 

-2  

The e r r o r  correcting 

code must have a t  least six information bits. 

candidates for  implementation a r e  a f i rs t  order Reed Muller code and a 

Two such codes which become 



Bose Chaudhuri-Hocquenghem (BCH) code [ 42; 43, pg. 1631. 

particular Reed Muller code of interest is a (32,6) code in which the 

minimum distance between code words is sixteen, and therefore, the 

code is capable of correcting a total of seven er rors .  

a (31,6) code and is also capable of correcting seven er rors .  

code wi l l  be used in the following discussion. 

ing code capable of seven e r ro r  corrections does not mean that the six 

information bits w i l l  be received over the noisy channel e r r o r  free. 

Since each code word length has been increased to thirty-one bits, eight 

or  more  e r ro r s  per code word cannot be guaranteed to be corrected. 

The probability of having eight or more e r ro r s  in the BCH code is given 

The 

The BCH code is 

The BCH 

Utilizing a n  e r r o r  correct- 

by the partial sum of the binomial distribution 

31-i 31 
C ( t l )p i ( l -p )  

i=8 
P(8 or more e r ro r s )  = 

where p is the binary symmetry channel e r r o r  rate. This probability is 

an upper bound for the incorrect reception of a code word since the 

possibility of correct  reception for greater than seven e r ro r s  still  

-2 
exists but is unknown. F o r  the specific channel e r r o r  rate of 4 x 10 , 
the e r r o r  corrected data samples wi l l  be received with probability of 

e r r o r  no greater than 2.26 X 10 
-5  

[ 441. Figure 6-5 displays the results 

of this e r r o r  correcting procedure. 

scenes whose spatial domains a r e  transmitted through the binary 

Figure 6-5a and 6-5c a r e  two test 

symmetric channel with the above er ror  rate. Figure 6-5b and 6-5d 



a) 4X10-2 Erro r  Rate in the 
Spatial Domain 

b) E r r o r  Corrected Retransformation 

4 x  Erro r  Rate in the d) E r r o r  Corrected Retransformation 
Spatial Domain 

Figure 6-5 .  Equal Bandwidth E r r o r  Correction Technique 



are the e r r o r  correction Fourier domain transmission results for each 

of the test scenes. While there is a loss of high frequency information 

in figures 6-5b and 6-5d, there is a marked improvement over the spatial 

coding in figures 6-5a and 6-5c. It is evident that this particular type of 

coding offers a considerable advantage for very noisy communication 

channels. 



7. Conclusions and Recommendations 

The conclusions and recommendations of this study on the 

'Transform Processing and Coding of Images" are listed below. 

The Fourier and Hadamard image transforms are potentially 

useful for image coding. With threshold coding of transform 

samplesabandwidth reductions of 4 : 1 or greater a r e  achievable 

for  the Fourier and Hadamard transforms. 

of the low spatial frequency samples of the Fourier and 

Hadamard transforms provides a considerable improvement 

in the tolerance to channel e r ro r s  for the same transmission 

bandwidth, as compared to conventional spatial domain coding. 

The Kronecker matrix transforms and the Karhunen-Loeve 

transform appear to possess many desirable properties for 

transform image coding, and therefore, deserve further 

investigation. 

An analysis of the statistical properties of the Fourier and 

Hadamard transforms indicates that the probability density 

of the transform samples tends toward a Gaussian distribution 

with a variance proportional to the power spectral density of 

the original image. Measurements over an ensemble of 

images should be made to verify this contention. 

E r r o r  correction 

Transform domain quantization rules have been developed 

for  subjective viewing and mean square spatial e r ro r  cri teria 



for the Fourier and Hadamard transforms. 

these transforms can be quantized with six bits per sample 

component without serious quantization e r ror .  

Samples of 



Appendix A 

Hadamard Transform Algorithm 

Computation of the one dimensional Hadamard transform by 

2 
brute force methods requires N 

an  addition or subtraction. An algorithm for  obtaining the one dimen- 

sional Hadamard transform in N log N operations has been developed. 

Computational savings a r e  realized by storage of intermediate results. 

A "fast" Hadamard transform algorithm w a s  outlined in 1937 by Yates [30]. 

In 1958 Good described a matrix decomposition technique which can be 

implemented to perform a Hadamard transform with N log N operations [29]. 

Figure A-1 illustrates the computations performed for our one 

operations where an  operation is either 

2 

2 

dimensional Hadamard transformation with eight data points. The data 

points a r e  arranged in a column a t  level 3 and then summed by pairs to 

produce intermediate results for  level 2. A dotted line linking two nodes 

indicates that the data point a t  the higher level is multiplied by minus one 

before addition, o r  equivalently, the data point forms the subtrahend of a 

subtraction operation. Operations follow the tree graph to level 0 which 

is the ordered Hadamard transform of f(x). 

performed a t  each node of levels 1, 2 ,  and 3 yielding a total of 8l0g 8 = 

24 operations. 

There a r e  two operations 

2 

The fast  Hadamard transform algorithm performs all  of the 

operations indicated in Figure A-1 ,  but in a certain selected order. 

operations of level k are not completed before proceeding to level k-1, 

A l l  



level 

Figure A- 1. Computations for one dimensional third order 
Hadama r d transform 



but rather operations a r e  performed according to a sieving sequence. 

Figure A-2 describes the basic sequence computations. 

is the ttS'l sequence in which the sum of all data points is formed to pro- 

duce F(0). 

of a pair of nodes a t  level k-1 to produce a result a t  level k. 

sequence, operations begin a t  level k-2 where pairs a r e  subracted from I 

one another to produce the results of level k-1 which in turn a r e  added 

together. The "3" sequence and higher sequences to the lrnrr sequence 

follow directly. 

the c omputa ti onal p r oc edur e. 

The f i r s t  sequence 

A "1" sequence subtracts the lower node from the upper node 

In the "2" 

Figure A-2 also indicates the storage requirements for 

Original data is stored in a block of N words corresponding to 

Intermediate results a r e  stored n-1 different blocks of sizes level n. 

2n- 1 2 
to 2 words. These storage locations correspond to levels n-1 to 

1 in the computation procedure. 

Computation of the Hadamard transform begins with the 'ISf' 

sequence which computes F(0).  

by the following sieving sequence of integers building up to integer n. 

Subsequent calculations a r e  controlled 

F o r  example, after the ''S" sequence, the "1" sequence computes F(1) 

using the intermediate results stored in level 1. 

computes F(2)  using the intermediate results in level 2. 

Then, the "2lI sequence 

Figure A-3 gives the storage locations for computation of a one 

dimensional third order Hadamard transform. The computer operations 



n n- 1 n- 2 

2n nodes 

3 2 

a 
3 2 1 0 

"2" 

2 1 0 

sequence 

level 
number 

d 

"S" sequence 
level 
number 1 0 

0 9 
0 

0 
0 

/ 
0 

0' 

1 I t  sequence 

It3'l sequence 

Figure A-2. Hadamard transform computational sequences. 
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3 2 1 0 I 
I - M F F  - A 

K - C 
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Figure A-3. Storage Locations for Computation of One- 
Dimensional Third Order Hadamard Transform 



for this example a r e  listed in Figure A-4. 

Since computation of the Hadamard transform requires only real  

additions and subtractions, whereas the Fourier transform computations 

a r e  composed of complex multiplications, additions, and subtractions, 

considerable computational savings are afforded with the Hadamard 

transform. 

grammed on a T R  w- 530 digital computer. Fo r  a 2 56 by 2 56 point scene 

the Fourier transform can be computed in 20 minutes and the Hadamard 

transform in 3 minutes. 

Both the Fourier and Hadamard transforms have been pro- 
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Appendix B 

Fourier Transform Algorithm 

The algorithm described here utilizes a modification to the 

Cooley-Tukey approach and requires N log N complex additions and only 

N - (log(N) - 2) t 1 complex multiplications for the one dimensional example. 
2 

This savings is significant when one realizes that a complex multiplication 

includes two real  multiplications and four real additions. 

computers have a longer multiply time than add time, the computation 

time is greatly reduced. 

tions can be achieved by evaluating spectral components in a specified 

order and using the fact that 

Since most 

The reduction of complex multiplication opera- 

The algorithm can be explained by letting f(x) be a one-dimensions€ 

n complex function which has been sampled and stored in N = 2 locations 

and defining F(u) to be the spectral domain representation of the Fourier 

transform of f(x) given by the equation 

Now expressing x and u in binary form, 

x = x  x 0 . .  xlxo; x. E (0 , l )  
n-1 n-2 J 

... u u - u. e (0 , l )  1 0’ J 
u = u  u n-1 n-2 



and taking advantage of the integer periodic qualities of the complex 

exponential function, we  can w r i t e  

1 1  1 1 
c f(x ,..., X )P P ... P P  1 0  F(Un,la.-.,UO) = c . D O  c n- 1 0 n-1 n-2 

n-2 = x  n- 1 xo=xl" 
(B- 5) 

where 

Now upon summing out the x., starting with the most significant bit (MSB), 

x , i t  is evident that the s u m  of equation (I3-2) is made in a specific order. 

I t  is the computation in this order that allows for  the storage of calculations 

J 

n- 1 

so that no identical computation need be repeated. 

vowever, now note that for each sum over x. the exponential, P 

can only take on specific values as a function of the particular spectral 

J j' 

point, u, being evaluated. 

(approaching the LSB of the binary representation of x) it is evident that 

the exponential, P., takes on values defined by the shifting of the binary 

In fact, as more and more  x. a r e  summed 
J 

representation 

point 001 were 

J 

of the spectral point, U. For 

being evaluated, the P. would 
J 

example, i f  the spectral 

take on values defined by 

and 

P. = exp [ 2n i  (100)x. ] , P. = exp [ 2n i (010)x~ 7 j 
J J J 

2n i 
P. = exp [- (001)x 1 . 

J N j J  



a ZIT ik 
F o r  convenience, define C = exp { N } and C = 1. Now a table can 

be formed in which the P. a r e  defined for each step in the computation 

and for each spectral point. In constructing such a table, it is advan- 

k 0 

J 

tageous to l is t  the spectral points a s  increasing binary numbers with the 

MSB on the right. In evaluating a particular spectral point, that point 

should be interpreted as its binary representation with the MSB on the 

n left. Fo r  example, when n = 4, N = 2 = 16 the table is given in Figure 

B-1. Note that such a table need not be constructed in the actual program. 

In evaluating spectral components as they are listed in the table, 

i t  is found that after evaluating point u = 0 and retaining all intermediate 

s u m s  in their storage locations the evaluation of point u = 8 requires only 

a single subtraction. This is because C = and from the table 
j c(.i+y) 

C = -C = -1. To evaluate spectral point u = 4 i t  is only necessary to 8 0 

back up. two storage locations and perform a subtraction to obtain C in 

column P and then perform one multiplication to obtain C in column P 1 4 

Note that this G To evaluate spectral point u = 12 a simple 

Continuing in this manner it is subtraction is necessary as C 

seen that all columns contain pairs of C = -C/ N' and that whenever 

one of these pairs is encountered, a simple subtraction is in order. 

8 

0' 

is circled. 
4 

12' = -C 4 

* j \ j+z) 
The 

circled constants are the locations in the algorithm in which a multiplication 

must take place. The number of actual multiplications that wi l l  be neces- 

s a ry  for each circled constant equals two raised to the index of the column 

in which the circled constant appears. 

Thus, in the table the total number of multiplications required is  



Figure B-1. Spectral Point Evaluation for N = 16 



0 1 2 
equal to (7)2 t (3)2 t (1)2 = 17 complex multiplications. In general, 

the number of complex multiplications is equal to: 

n 
= Z(n-2)  t 1 k=2 c (Zk-I-  1)2n-k 2 

n 
w h e r e  N = 2 

As a n  example, Fourier transforming a function with 1024 points requires 

4097 complex multiplications as compared to N log 

multiplications. 

N = 10,240 complex 2 

Note that with such an  algorithm the number of exponen- 

N 
tial constant, C., that must  be used is - - 1. In general, the number of J 2 

storage locations for data for  the entire transformation is 

N initial data points 

N spectral data points 

n- 1 

i= 1 
N C ( $ )  temporary storage locations 

= N-2 

Total data locations = N t N t N-2 = 3N - 2. 

Implementation of the algorithm is best described wi th  reference 

to Figure B-2. In designing the computer program to implement the 

one-dimensional algorithm additional computation may be saved if the 

input is known to be real. 

as a symmetric conjugate property of the Fourier transform and conse- 

quently only 3 i- 1 spectral  data points need be'calculated. However, 

the program must be able to accept complex inputs whenever the case 

Such a restriction on the input manifests itself 

2 
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should ar ise .  

The spectral point is calculated by incrementing a binary counter and 

interpreting the most significant bit a s  the least. 

a r e  obtained by an  inverse sieving operation and a r e  exemplified in 

Figure B-2 shows the command control for the program, 

The program numbers 

Figure B-1. 

becomes necessary, a lso Figure B-1. 

program takes place. 

simply sequentially adds the f i r s t  half of the data input to the second half 

N storing the results in - storage locations. 2 

until the final sum is stored in one storage location. 

amount of dc in the original function, f(x). 

up a storage location and performs a subtraction resulting in the value 

for  the spectral point found by adding - to the prior spectral point. This 

can be verified from Figure B-1 where program PN1 always evaluates the 

N spectral point - = 8 greater than the previous spectral point. 2 

that program PNl always evaluates spectral points greater than or  equal 

N to - and consequently need not be implemented, except once, for real  2 

inputs. A l l  other programs back up a respective number of levels of 

storage locations, implement a ser ies  of subtractions and multiplications 

and branch to the next lower program number. An eight point transform 

program has been included to demonstrate the operations involved. The 

table for  n = 3 is shown in Figure B-3. In Figure B-4 the eight spectral 

The coefficient addresses a r e  computed when a multiplication 

Finally a branch to a particular 

Program PNO will always be the f i r s t  program and 

This operation is repeated 

This result is the 

Program PN1 simply backs 

N 
2 

Notice 

points a r e  formed showing storage locations and redundant use of storage 

locations. Notice the fact that C C = has been used in some of the k j ‘k+j 



Figure B-3. Spectral Point Evaluation for N = 8 



P N  Spectral  Pt. 

u = 000 

u = 010 

u = 001 

u =  101 

Total  Adds: 24 

Total  Mult. : 5 

Ope rat ions 

1 t 5  + 9 
i t 6  -i i o  
3 t 7  -0 11 
4t8 + 12 
94-11 + 13  
l o t 1 2  3 4 
i 3 t i 4  

13-14 

9-11 4-13  
10-12 + 14 

C2x14+ 14 

13 t14  

13-14 
-1-5 + 9 
-2-6 -i 10 
3 - 7  -i 11 
-4-8 -i 12 
C2Xl l  -i 11 
- c x12 -b 12 

4 l o t 1 2  + 12 
9 f l 1  -i 13 

C1x14 -i 14 

13t14  

13-14 

9-11 -i 13 
10-12 + 14 

C x14-i 14 
1h-14 

13-14 

- 
1 f (0) t f  (4)tf (2)tf  (6) t f ( 1) t f  ( 5) t f ( 3) t f (7)l 

I f(o)tf)4)tf  (2)tf  (6) tc Af ( 1 )tCAf (5) tC,f (3) tC Af (7) 1 
- 

If(ojtf(4)tc4f(2)tc4f(6)tc2f( - 1)tC2f(5)tC6f(3)tC6f(7) 

Lf (0) t f (4 ) t  C *f (2) t c 4f (6) t  C 6f ( 1 ) t c 6f ( 5) t  c 2f ( 3) t c 2f (7) 

f (0) tC f(4) f(1)tC f(5) f(2)tC f(6) f ( 3 ) t c  f(7) 
4 9 4 1 4 1 4 1 2  

(0) tc4f (4) t c $2) tc6f (6) (1) tC4f( 5)tC2f( 3) tC 6f(7) 
14 

c f ( 1) tC  sf( 5 ) t  c 3f (3)tC 7f (7) 
1 A  

f ( o) t c4 f (4 ) t c2 f (  2 ) t c6 f (6 ) tC  1)tC3f( 3) tC7f(7) t  C 5f (5) 

(0 ) t  c4f (4) tc sf( 2) tc 2f (6 f( l ) tC4f(  5)tC6f( 3)tC2f(7) 

]C,f( l)+C,f(5)tC, f(3)tCPf(7)1 

- 
f (  0) tc4f (4)t  C6f( 2 ) t c  f (6 ) tC 3f( 1) tC7f(  5 ) t  c f( 3) t c 5f (7) 

2 

FIGURE B-4 

COMPUTER OPERATIONS AND STORAGE LOCATIONS 
FOR N = 8 



calculations. A l so ,  included in Figure B-4 i s  a l i s t  of operations, the 

program controlling the operations, and destinations on the data in a l l  

locations. 



Appendix C 

Experimental Image Process or  

Figure C- 1 illustrates the experimental image processing equip- 

ment used for  the images which appear in this report. 

images the vidicon camera can be used to input video information into the 

A D converter for digitization. 

spot scanner is required. 

Fo r  low resolution 

However, for higher resolution a flying 

The video signal is converted to digital form 

by an analog-to-digital converter, and stored on magnetic tape for pro- 

cess ing . 
A TRW-530 digital computer with 8 ,000  words of storage and 2 

magnetic tape units forms the central processor. 

the existing Fourier transform program of Appendix B a Fourier transform 

of a 256 by 256 sample point image with complex sample points can be 

performed in less  than 20 minutes. With real sample points only, the 

computation time is reduced to about 15 minutes. Shorter computation 

time could be achieved, with a faster computer having greater storage 

capacity. 

image can be implemented in 3 minutes. 

then modified according to some "filtering" function and the resulting plane 

is inverse transformed back to image form. 

magnetic tape from which i t  is converted through a D/A device for display 

on a flying spot scanner o r  cathode r a y  tube monitor. 

report have all been photographed from the cathode ray tube monitor. 

With this computer and 

The Hadamard program of Appendix A fo r  the same resolution 

The transformed results a r e  

The result is  then stored on 

The images in this 
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